This note is mainly based on Chapter 12 of Liu (2008).
Adaptive Direction Sampling (ADS): Snooker Algorithm
Conjugate Gradient Monte Carlo (CGMC)
where MTM refers to
Bimodal Example
whose contour plot is
For the general MH procedure:
functionpropose(x; a =4) θ =rand() *2π r =rand() *4return [x[1] + r*cos(θ), x[2] + r*sin(θ)]endfunctioniMH(M =200000)# start points x = [rand() -0.5,rand() -0.5] X =ones(M,2) num =0for m =1:M xs =propose(x) ρ =targetpdf(xs) /targetpdf(x)ifrand() < ρ x = xs num +=1end X[m,:] = xendreturn X, num/Mend
For CGMC, there is a long way to go. Firstly, find out the derivative of target pdf and find the anchor point:
# derivative of targetpdffunctiondm(x; step =0.05, nmaxstep =100) term1 = w[1] /2π *exp(-0.5*sum(x.^2)) term2 = w[2] / (2π *0.19) *exp( -0.5*transpose(x.+6) * invΣ2 * (x.+6) ) term3 = w[3] / (2π *0.19) *exp( -0.5*transpose(x.-4) * invΣ3 * (x.-4) ) term = term1 .+ term2 * invΣ2 + term3 * invΣ3# negative of gradient direction (remove the minus symbol already) dx1 = term[1,1]*x[1] + term[1,2]*x[2] dx2 = term[2,1]*x[1] + term[2,2]*x[2] dx = [dx1, dx2]# find local maximum bst =targetpdf(x) i =0while i < nmaxstep i +=1 cur =targetpdf(x .- step * dx)if cur > bst bst = cur x = x .- step * dxelsebreakendendreturn xend
functionMTM(anchor, direction;M =100, k =5, σ =10)# use the simplified version: OBMC algorithm# initial x x =2*rand()-1 num =0for m =1:M y =ones(k) wy =ones(k)for i =1:k y[i] =rand(Normal(x, σ)) wy[i] =f(y[i], anchor, direction)end#wy = wy ./ sum(wy) yl =sample(y,pweights(wy))# draw reference points xprime =ones(k) xprime[k] = x wxprime =ones(k) wxprime[k] =f(x, anchor, direction)for i =1:k-1 xprime[i] =rand(Normal(yl, σ)) wxprime[i] =f(xprime[i], anchor, direction)end# accept or not ρ =sum(wy) /sum(wxprime)ifrand() < ρ x = yl num +=1endendreturn x, num/Mend
Finally, we can combine these sub-procedures:
functioncgmc(M =200000)# start points (each col is a stream) x =rand(2,2) .-0.5 X =ones(M,4)for m =1:M# randomly choose xa xaIdx =sample([1,2]) xa = x[:,xaIdx]# find gradient of pdf at xa (or conjugate gradient of log pdf at xa) y =dm(xa) xcIdx =3- xaIdx xc = x[:,xcIdx] e = y - xc e = e /norm(e)# sample r r,=MTM(y, e)# update xc x[:,xcIdx] = y .+ r*e X[m, :] .=vec(x)endreturn Xend
Refer to bimodal-example.jl for the complete source code. Run the program, I can reproduce Fig 11.1 successfully,
Evolutionary Monte Carlo (EMC)
and its simplified version orientational bias Monte Carlo (OBMC) when w(x,y)=π(x):
Then implement MTM algorithm for sampling radius r: