Bayesian Model Choice
Green's algorithm
Fixed Dimension Reassessment
RJMCMC for change points
The log-likelihood function is
p(y∣x)=i=1∑nlog{x(yi)}−∫0Lx(t)dt=j=1∑kmjloghj−j=0∑khj(sj+1−sj) where mj=#{yi∈[sj,sj+1)}.
H Move
choose one of h0,h1,…,hk at random, obtaining hj
propose a change to hj′ such that log(hj′/hj)∼U[−21,21].
the acceptance probability is
α(hj,hj′)=p(hj∣y)p(hj′∣y)×J(hj′∣hj)J(hj∣hj′)=p(y∣hj)p(y∣hj′)×π(hj)π(hj′)×J(hj′∣hj)J(hj∣hj′). Note that
loghjhj′=u, it follows that the CDF of hj′ is
F(x)=P(hj′≤x)=P(euh≤x)=P(u≤log(x/h))=log(x/h)+1/2 and
f(x)=F′(x)=x1, so
J(hj′∣hj)=hj′1. Then we have
α(hj,hj′)=p(y∣hj)p(y∣hj′)×hjαexp(−βhj)(hj′)αexp(−βhj′)=likelihood ratio×(hj′/hj)αexp{−β(hj′−hj)}
P Move
Draw one of s1,s2,…,sk at random, obtaining say sj.
Propose sj′∼U[sj−1,sj+1]
The acceptance probability is
α(sj,sj′)=p(y∣sj)p(y∣sj′)×π(sj)π(sj′)×J(sj′∣sj)J(sj∣sj′)=likelihood ratio×(sj+1−sj)(sj−sj−1)(sj+1−sj′)(sj′−sj−1) since
π(s1,s2,…,sk)=L2k+1(2k+1)!j=0∏k+1(sj+1−sj)
Birth Move
Choose a position s∗ uniformly distributed on [0,L], which must lie within an existing interval (sj,sj+1) w.p 1.
Propose new heights hj′,hj+1′ for the step function on the subintervals (sj,s∗) and (s∗,sj+1). Use a weighted geometric mean for this compromise,
(s∗−sj)log(hj′)+(sj+1−s∗)log(hj+1′)=(sj+1−sj)log(hj) and define the perturbation to be such that
hj′hj+1′=u1−u with u drawn uniformly from [0,1].
The prior ratio, becomes
p(k)p(k+1)L22(k+1)(2k+3)sj+1−sj(s∗−sj)∗(sj+1−s∗)×Γ(α)βα(hjhj′hj+1′)α−1exp{−β(hj′+hj+1′−h)} the proposal ration becomes
bk(k+1)dk+1L and the Jacobian is
hj(hj′+hj+1′)2 Death Move
If sj+1 is removed, the new height over the interval (sj′,sj+1′)=(sj,sj+2) is hj′, the weighted geometric mean satisfying
(sj+1−sj)log(hj)+(sj+2−sj+1)log(hj+1)=(sj+1′−sj′)log(hj′) The acceptance probability for the corresponding death step has the same form with the appropriate change of labelling of the variables, and the ratio terms inverted.
Results
The histogram of number of change points is
And we can get the density plot of position (or height) conditional on the number of change points k, for example, the following plot is for the position when k=1,2,3
References